home 
contents Mathematics 
previous
:
counting in a different way 
next
:
how to travel from one number toward another? 
direct to all other pages of the section >  00  01  02  03  10  11  12  20  21  30  31  32  33  34 
Let's go
back from zero
We shall not demonstrate that Cantor
made a mistake in his logical argument, when approaching infinity and reaching
it.
We shall try to demonstrate he took the wrong way when starting. Cantor asks us to start by lining up all irrational numbers. In fact, all irrational numbers cannot possibly be lined up at the same time on the same line. 
Since Cantor precisely, mathematicians
have a concept called 'the real straight line' on which they line up all
real numbers, according to their size [note: we recall that real numbers
are made of rational numbers and irrational numbers.]
We shall try to demonstrate, even
beyond irrational real numbers, that a real straight line is an impossible
freak. That there is no straight
line on which we could line up all real numbers at the same time.
To demonstrate this, we have to go
back to the source, that is, to the way numbers are produced according
to the set theory.
Let us begin with whole numbers.
In set theory to produce whole numbers
we begin by making a statement: we declare that not a single thing can
be the opposite of itself. For instance, that not a single thing can be
positive and negative at the same time, here and not here at the same time,
etc. This statement accomplished, we make a packet with all the things
which are contradictory to themselves. This packet contains nothing. Then,
we call it 'the empty set'. Then, we state that this empty set corresponds
to digit 'zero'.
Digit zero, is used to remember that we made a packet whose name is 'empty set'. This label is not put on the empty set itself. The label of the empty set, that is to say its name, is 'empty set'. Zero, is the label which corresponds to the very operation of putting it in a packet, of labeling empty set, of acknowledging its existence. Zero is used as a label  as a name  to designate this act. So, zero is the recording of what
we have when we have nothing.

When generating numbers in such a
way, by putting in one set, things which are the opposite of themselves,
we notice two important facts.
 first, we find nowhere in the numbers we produce thus, anything which
looks like a decimal number, a fractional number or an irrational number.
We always fall down exactly on whole numbers, never between two of them.
 secondly, we notice that we cannot make the recording of empty set, without
recording its existence at the same time, therefore that there is a set
which contains nothing, therefore that there is one set, therefore that
there is some 'nothing' and some 1, therefore 2 things, therefore some
'nothing', some 1 and some 2, therefore 3 things, and so on.
So, making 0, 1, 2, 3, 4, etc. to
infinity does not amount to move forward progressively as on a straight
line, with small repeated leaps occurring the ones after the others, and
making notches in the line, each separated from the others. On the opposite,
it is unrolling in one go all the numbers till infinity while we are still
doing 0.
All
whole numbers are thus contained in zero, condensed in zero. Even infinity.
Of course, afterwards, that is after
they have been generated, nothing prevents us from lining up all positive
whole numbers on a straight line, which starts in 0 and goes till infinity.
But that's storage, a spreading. Nothing to do with the dynamic creation
of whole numbers. Nothing to do with the fact that they exist, that we
can produce them.
Now that we have whole numbers,
let's see fractional numbers such as .1 or .23489421.
All whole numbers being condensed in 0, there is no path between 0 and 1. There is no path that we could graduate by putting the label of a decimal number on every interval met between 0 and 1. If we want to graduate something, without being able to circulate on this thing, doing marks along such a path, the only way we have is to deform this thing and to graduate the intensity of the deformation. That is the way we shall generate fractional numbers and irrational numbers: graduating the intensity of a deformation, in a manner that the complete absence of deformation will be graded 0, and the maximum possible deformation will be graded 1. 
You will say that this procedure
is not in set theory.
But we did warn that we would suggest
a change with the idea we have of numbers.
Besides,
what we shall now do, is not really to suggest a new way of counting but
to realize what we really do when we pick up a decimal number.
In the same way as Molière's
hero Mr. Jourdain could write and speak in prose without being aware of
it, surely we do 'something' when we 'pick up' a decimal number. If set
theory is right when it says that we generate all whole numbers in one
go by designating the existence of 0, itself designating the existence
of empty set, then we are forced to admit that what we do without being
aware of it when picking up a decimal number, cannot be a path: it can
only be a deformation.
How do we do?
Let us pick up a decimal number
at random. For example .340238911352. We notice several inescapable facts:
1/ First, we put a decimal point. That is to say, we put a label of a special type, which is used to remember that what is left and what is right of this sign, must not be mixed.
2/ Then we put several decimal digits that are as many labels as things we want to remember. In this case, we used 12 decimal digits. We used 12 digits because we needed them. If we could have used fewer, we would have done so. On the other hand, we know that we can add as many digits as we want behind these 12 digits: that will not change the number provided we only add digits 0.
3/ The order of the digits is also significant. Number .129 is in no way, the same as number .912. Then, there is also something we want to remember, which is contained in the order in which we line up decimal digits.
4/
Last but not least: we only use 10 different labels, which are enough to
create and designate all decimal numbers: the labels 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9. Then what we want, at every decimal digit, is to keep the
trace of something which can only take 10 regularly graduated values. By
the way, we can notice that we could have proceeded differently. Instead
of using the first 10 whole numbers, we could have used letters of alphabet,
or any small drawing as well. The fact we use the first 10 whole numbers
to name decimal digits, has nothing to do with the fact that they are numbers.
It's only that we remember the order in which they are lined up more easily,
than for instance the order of a star, a fourleaf clover, an ace, etc.
Also, we are not obliged to use
10 graduations. This number is only valid for numbers in '10 base'. We
could as well have used numbers with 16 base or more. In fact, the bigger
the number of labels, the fewer decimal digits will be needed, for the
range of graduation covered by every label is all the thinner. Computing
commonly uses this property, when using for instance all the letters of
the alphabet, and even all other keyboard signs instead of numbers. This
allows every number, made with successive choices in that multitude of
signs, to be composed of fewer labels than if made of successive choices
in the first 10 whole numbers. In that way, they occupy less space in the
memory where they are kept. Thus for instance, a number can be recorded
as: 4#DF.
Now that we have listed all the
sorts of traces which we try to remember when we name a decimal number,
let us describe step by step, how we manage to produce such a number.
First, we pick up a whole number,
from 0 toward positive infinity or from 0 toward negative infinity. And
we leave it untouched, without deformation.
After the decimal point, we
list intensities of deformations, one after the other.
If we do not have exactly our number after a first deformation, we shall keep as a reminder, the label corresponding to the intensity of the last deformation we have found before we had missed the number. That is not 'the nearest' to the number we search, for there is no distance: that is 'the latest', before we notice the failure. So, a 1st deformation, jumping by rigid steps of intensity from 0 to 9, was not enough to get the number. Then we start again with a 2nd deformation. Its reminder will be kept in the same way, by designating the instant the number is failed with the intensity of the deformation measured at that moment. And so on until we get the exact number we have been searching. When we have it, if we want, we can put behind as many 0 as we wish. This will only serve to remember that all the deformations we are now making have an intensity equal to zero. But it is no use bothering to do so and we have better not to do this: if we refrain from putting these 0, that will point out that we have stopped deforming the number. If we want an irrational number, we shall proceed as with any decimal number. We just have to continue infinitely to make a deformation following another, and to mark the failure every time with a label. 
So, here
comes the question again: can we put these fractional and irrational numbers
we can produce in that way, all on the same straight line? And preferably
on the same straight line as all whole numbers?
This
time the answer is no! Definitely no!
For,
if we want to keep all the data which were useful to get a decimal number,
we have to keep track of all these successive deformations, and of their
order of occurrence.
If we want to keep all these data
in a "spatial" way, that is in a graph, the least we can do, is to spread
this succession of deformations the ones beside the others, without changing
their order, nor their number, nor the intensity value noticed at every
failure.
If we lose only one of these data,
we lose what distinguishes one number from another, we wrongly mix two
different numbers, and we lose the number we wanted to represent in a space.
spatiale representation of the numbre x.378
If we draw a diagram keeping all these data, we can see clearly that a decimal number, to be represented, requires a space with a minimum of 2 dimensions: then, that's a surface, not a straight line. 
If we draw together, on such an infinite
surface, all decimal numbers, the surface will then be paved with junction
knots. We shall not be able to remove them, or to cut them so as to 'give
way to' the more remote numbers and to bring all of them back on the same
straight line as those we had begun lining up.
You can also understand this impossibility,
in the following way: one point on a straight
line marks one position. This marking can only keep one datum, that
is the distance to the origin 0 of the straight line. But to keep memory
of the operations which are used to differentiate one decimal number from
another, we have to retain several data: how many deformations,
in what order, and what intensity for every deformation. We cannot use
a system with one datum only to locate a decimal number requiring several
of them. Unless we agree to lose a considerable part, of what is used to
differentiate one number from another.
Of course, if for convenience we
agree to lose data about numbers to put them on the same straight line,
when
doing demonstrations about their properties we have to refrain from using
this way of storage which massacres them. Yet, that's what Cantor asks
us to do, when beginning asking us: 'put all the irrational numbers in
the same column'. If we extend until infinity, a reasoning which
starts massacring numbers, making them lose more than half their properties,
we must not be stunned if we get freaks when reaching infinity. Nor be
worried.
Even whole numbers cannot be correctly
depicted all and together, by a straight line. For there are more data
in the infinite series of whole numbers than there are in the infinite
series of the points on a straight line. This extra datum is that whole
numbers are at the same time all mixed up with zero and all having a gap
of '+ 1' between one another. The points of a straight line, are 'only'
differentiated by a gap between them. They are not 'also', gathered in
the same point.
Thus, the data contained in the
set of whole numbers are not of the same type as those contained in the
set of the points of a straight line. For that reason, you cannot use the
properties of one to deduce the properties of the other.
home 
Math 
top 
next : how to travel from one number toward another? 
author 